RACEing to agile Big Data Analytics


I am happy to announce the development we did over the last month within Teradata. We developed a light-weight process model for Big Data Analytic projects, which is called “RACE”. The model is agile and resembles the know-how of more than 25 consultants that worked in over 50 Big Data Analytic projects in the recent month. Teradata also developed CRISP-DM, the industry leading process for data mining. Now we invented a new process for agile projects that addresses the new challenges of Big Data Analytics.

Where does the ROI comes from?

This was one of the key questions we addressed when developing RACE. The economics of Big Data Discovery Analytics are different to traditional Integrated Data Warehousing economics. ROI comes from discovering insights in highly iterative projects run over very short time periods (4 to 8 weeks usually) Each meaningful insight or successful use case that can be actioned generates ROI. The total ROI is a sum of all the successful use cases. Competitive Advantage is therefore driven by the capability to produce both a high volume of insights as well as creative insights that generate a high ROI.

What is the purpose of RACE?

RACE is built to deliver a high volume of use cases, focusing on speed and efficiency of production. It fuses data science, business knowledge & creativity to produce high ROI insights

How does the process look like?

RACE - an agile process for Big Data Analytic Projects
RACE – an agile process for Big Data Analytic Projects

The process itself is divided into several short phases:

  • Roadmap.That’s an optional first step (but heavily recommended) to built a roadmap on where the customer wants to go in terms of Big Data.
  • Align. Use-cases are detailed and data is confirmed.
  • Create. Data is loaded, prepared and analyzed. Models are developed
  • Evaluate. Recommendations for the business are given

In the next couple of weeks we will publish much more on RACE, so stay tuned!

Advertisements

Published by

Mario Meir-Huber

I work as Big Data Architect for Microsoft. With this role, I support my customers in applying Big Data technologies - mainly Hadoop/Spark - for their use-cases. I also teach this topic at various universities and frequently speak at various Conferences. In 2010 I wrote a book about Cloud Computing, which is often used at German & Austrian Universities. In my home country (Austria) I am part of several organisations on Big Data.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s